References
- 1
Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191–3211, March 2008. URL: https://doi.org/10.1016/j.jcp.2007.11.038, doi:10.1016/j.jcp.2007.11.038.
- 2
G. N. Coleman, J. Kim, and R. D. Moser. A numerical study of turbulent supersonic isothermal-wall channel flow. Journal of Fluid Mechanics, 305:159–183, December 1995. URL: https://doi.org/10.1017/s0022112095004587, doi:10.1017/s0022112095004587.
- 3
E.R. Van Driest. Turbulent boundary layer in compressible fluids. J. the Aeronaut. Sci., 18(3):145–160, 1951.
- 4
E.R. Van Driest. The problem of aerodynamic heating. Fluids, 1956.
- 5
Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1):202–228, June 1996. URL: https://doi.org/10.1006/jcph.1996.0130, doi:10.1006/jcph.1996.0130.
- 6
B. J. McBride, M. J. Zehe, and S. Gordon. NASA Glenn coefficients for calculating thermodynamic properties of individual species. NASA/TP 211556, NASA, 2002.
- 7
D. Modesti and S. Pirozzoli. Reynolds and Mach number effects in compressible turbulent channel flow. International Journal of Heat and Fluid Flow, 59:33–49, June 2016. URL: https://doi.org/10.1016/j.ijheatfluidflow.2016.01.007, doi:10.1016/j.ijheatfluidflow.2016.01.007.
- 8
D. Modesti, S. Sathyanarayana, F. Salvadore, and M. Bernardini. Direct numerical simulation of supersonic turbulent flows over rough surfaces. Journal of Fluid Mechanics, May 2022. URL: https://doi.org/10.1017/jfm.2022.393, doi:10.1017/jfm.2022.393.
- 9
S. Pirozzoli and T. Colonius. Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. Journal of Computational Physics, 248:109–126, September 2013. URL: https://doi.org/10.1016/j.jcp.2013.04.021, doi:10.1016/j.jcp.2013.04.021.
- 10
S. Pirozzoli and P. Orlandi. Natural grid stretching for DNS of wall-bounded flows. Journal of Computational Physics, 439:110408, August 2021. URL: https://doi.org/10.1016/j.jcp.2021.110408, doi:10.1016/j.jcp.2021.110408.
- 11
Sergio Pirozzoli. Generalized conservative approximations of split convective derivative operators. Journal of Computational Physics, 229(19):7180–7190, September 2010. URL: https://doi.org/10.1016/j.jcp.2010.06.006, doi:10.1016/j.jcp.2010.06.006.
- 12
Y. Tamaki, Y. Kuya, and S. Kawai. Comprehensive analysis of entropy conservation property of non-dissipative schemes for compressible flows: KEEP scheme redefined. Journal of Computational Physics, 468:111494, November 2022. URL: https://doi.org/10.1016/j.jcp.2022.111494, doi:10.1016/j.jcp.2022.111494.
- 13
A. Trettel and J. Larsson. Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids, 28(2):026102, 2016.
- 14
Francesco De Vanna, Alberto Benato, Francesco Picano, and Ernesto Benini. High-order conservative formulation of viscous terms for variable viscosity flows. Acta Mechanica, 232(6):2115–2133, February 2021. URL: https://doi.org/10.1007/s00707-021-02937-2, doi:10.1007/s00707-021-02937-2.
- 15
P. Volpiani, P.S. Iyer, S. Pirozzoli, and J. Larsson. Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids, 5(5):052602, 2020.