Post-processing data

Plotting 3D data

Three dimensional flow fields are stored in Plot3D and/or VTK format and can be visualized using Paraview, or Tecplot.

Post-processing flow statistics

Mean flow statics are stored in raw format in the file stat.bin. To post-process it, use the post-processing program available in the folder tools/postpro. Compile the tool by typing,

$ make

This will produce the executable postpro.exe. An input file postpro.ini with the following variables is necessary for all flow cases.

postpro.ini

  • recompute_avg => integer, when recompute_avg=0 use averages calculated at runtime (in time and homogeneous spatial directions), when recompute_avg=1 calculate the time-averaged flow statistics starting from the spanwise averaged planes contained in the folder AVGZ. For channel flow cases statistics are also averaged in the streamwise direction.

  • it_start => integer, starting index of the spanwise averaged planes in AVGZ for computing the time averaged statistics

  • it_end => integer, starting index of the spanwise averaged planes in AVGZ for computing the time averaged statistics

  • it_out => integer, skip index of the spanwise averaged planes in AVGZ for computing the time averaged statistics. Uses every it_out plane to calculate the time-averaged flow statistics

  • save_plot3d => integer, when save_plot3d=1 saves 2D mean flow in plot3d format

  • plot3d_vars => integer, determines what variables are stored in the plot3D files (example: plot3d_vars = 1,2,3,4,13). 70 variables can be be printed:

  • 1: \(\langle \rho \rangle\)

  • 2: \(\langle u \rangle\)

  • 3: \(\langle v \rangle\)

  • 4: \(\langle w \rangle\)

  • 5: \(\langle p \rangle\)

  • 6: \(\langle T \rangle\)

  • 7: \(\langle \rho^2 \rangle\)

  • 8: \(\langle u^2 \rangle\)

  • 9: \(\langle v^2 \rangle\)

  • 10: \(\langle w^2 \rangle\)

  • 11: \(\langle p^2 \rangle\)

  • 12: \(\langle T^2 \rangle\)

  • 13: \(\langle \rho u \rangle\)

  • 14: \(\langle \rho v \rangle\)

  • 15: \(\langle \rho w \rangle\)

  • 16: \(\langle \rho u u \rangle\)

  • 17: \(\langle \rho v v \rangle\)

  • 18: \(\langle \rho w w \rangle\)

  • 19: \(\langle \rho u v \rangle\)

  • 20: \(\langle \mu \rangle\)

  • 21: \(\langle \nu \rangle\)

  • 22: \(\langle \omega_x^2 \rangle\)

  • 23: \(\langle \omega_y^2 \rangle\)

  • 24: \(\langle \omega_z^2 \rangle\)

  • 25: \(\langle \rho T \rangle\)

  • 26: \(\langle \rho T^2 \rangle\)

  • 27: \(\langle T_{0} \rangle\)

  • 28: \(\langle \rho T_{0} \rangle\)

  • 29: \(\langle T_{0}^2 \rangle\)

  • 30: \(\langle \rho u T \rangle\)

  • 31: \(\langle \rho v T \rangle\)

  • 32: \(\langle \rho w T \rangle\)

  • 33: \(\langle Mach \rangle\)

  • 34: \(\langle Mach^2 \rangle\)

  • 35: \(\langle \rho u u^2 \rangle\)

  • 36: \(\langle \rho v u^2 \rangle\)

  • 37: \(\langle \rho u v^2 \rangle\)

  • 38: \(\langle \rho v v^2 \rangle\)

  • 39: \(\langle \rho u w^2 \rangle\)

  • 40: \(\langle \rho v w^2 \rangle\)

  • 41: \(\langle p u \rangle\)

  • 42: \(\langle p v \rangle\)

  • 43: \(\langle \sigma_{11} \rangle\)

  • 44: \(\langle \sigma_{12} \rangle\)

  • 45: \(\langle \sigma_{13} \rangle\)

  • 46: \(\langle \sigma_{22} \rangle\)

  • 47: \(\langle \sigma_{23} \rangle\)

  • 48: \(\langle \sigma_{33} \rangle\)

  • 49: \(\langle \sigma_{11} u \rangle\)

  • 50: \(\langle \sigma_{12} u \rangle\)

  • 51: \(\langle \sigma_{21} v \rangle\)

  • 52: \(\langle \sigma_{22} v \rangle\)

  • 53: \(\langle \sigma_{31} w \rangle\)

  • 54: \(\langle \sigma_{32} w \rangle\)

  • 55: \(\langle \sigma_{11} v + \sigma_{21} u \rangle\)

  • 56: \(\langle \sigma_{12} v + \sigma_{22} u \rangle\)

  • 57: \(\langle \sigma_{11} u_x + \sigma_{12} u_y + \sigma_{13} u_z \rangle\)

  • 58: \(\langle \sigma_{21} v_x + \sigma_{22} v_y + \sigma_{23} v_z \rangle\)

  • 59: \(\langle \sigma_{31} w_x + \sigma_{32} w_y + \sigma_{33} w_z \rangle\)

  • 60: \(\langle \sigma_{11} v_x + \sigma_{12} (u_x + v_y) + \sigma_{22} u_y + \sigma_{13} w_z + \sigma_{23} u_z \rangle\)

  • 61: \(\langle p u_x \rangle\)

  • 62: \(\langle p v_y \rangle\)

  • 63: \(\langle p w_z \rangle\)

  • 64: \(\langle p (u_y + v_x) \rangle\)

  • 65: \(\langle (\nabla \cdot \mathbf{u})^2 \rangle\)

  • 66: \(\langle \rho T^2 T \rangle\)

  • 67: \(\langle \rho T^4 \rangle\)

  • 68: \(\langle \rho u^3 \rangle\)

  • 69: \(\langle c_p \rangle\)

  • 70: \(\langle \gamma \rangle\)

  • ixstat => list of integers, global mesh indices at which extract boundary layer profiles. Meaningful for boundary layer and airfoil flow cases.

  • stat_0_1 => integer, only meaningful when io_type_w == 1. When stat_0_1=0 the postprocessing tool reads statistics from the previous run , when stat_0_1=1 reads statistics from latest run

  • npoints_bl => integer, only meaningful for curved boundary layers and airfoils. Number of points to be used for extracting

  • ix_out, ix_ramp_skip => integers, only meaningful for curved boundary layers. Prints boundary layer wall quantities between ix_ramp_skip and nx-ix_ramp_skip every ix_out points.

Different files will be printed depending on the flow case that has been run.

Flow cases

Channel flow

Make sure that the file postpro.ini is present in the run folder and all the parameters have been set correctly. Copy the executable postpro.exe to the case folder you want to post-process and run:

$ ./postpro.exe

This will print the post-processed flow statistics in the folder POSTPRO/, which will contain the files channinfo.dat and channstat.prof

channinfo.dat

The file channinfo.dat contains

  • \(Re_\tau=u_\tau h/\nu_w\), friction Reynolds number, where \(h\) is the channel half width and \(\nu_w\) the kinematic viscosity at the wall

  • \(\overline{\rho}_w\) mean wall density

  • \(u_\tau/u_b\), ratio between friction and bulk flow velocity

  • \(C_f=2\overline{\tau}_w/(\rho_b u_b^2)\) skin-friction coefficient based on the mean wall shear stress, bulk flow velocity and bulk fluid density

channstat.prof

The file channstat.prof contains mean profiles of channel flow in the following format:

  1. \(y/h,\quad\) wall-normal coordinate normalized with the channel half width

  2. \(\overline{\rho}/\rho_b,\quad\) mean density normalized by bulk density

  3. \(\widetilde{u}/u_b,\quad\) Mean Favre velocity normalized by bulk velocity

  4. \(\overline{T}/T_w,\quad\) mean temperature normalized by the wall temperature

  5. \(\overline{p}/(\rho_bu_b^2),\quad\) mean pressure normalized by twice the dynamic pressure

  6. \(\overline{\mu}/\mu_w,\quad\) mean viscosity normalized by the wall viscosity

  7. \(y^+,\quad\) wall-normal coordinate in viscous units

  8. \(y_{TL}^+,\quad\) wall-normal coordinate transformed according to Trettel & Larsson [16] in viscous units (equivalent to y^*quad semi-local scaling)

  9. \(y_{V}^+,\quad\) wall-normal coordinate transformed according to Volpiani et al. [17] in viscous units

  10. \(u^+,\quad\) mean streamwise velocity in viscous units

  11. \(u_{VD}^+,\quad\) mean streamwise velocity transformed according to van Driest [3] in viscous units

  12. \(u_{TL}^+,\quad\) mean streamwise velocity transformed according to Trettel & Larsson [16] in viscous units

  13. \(u_{V}^+,\quad\) mean streamwise velocity transformed according to Volpiani et al. [17] in viscous units

  14. \(u_{G}^+,\quad\) mean streamwise velocity transformed according to Griffin et al. [5] in viscous units

  15. \(u_{H}^+,\quad\) mean streamwise velocity transformed according to Hasan et al. [6] in viscous units

  16. \(y^+du_{VD}^+/dy_{VD}^+,\quad\) van Driest indicator function

  17. \(y_{TL}^+du_{TL}^+/dy_{TL}^+,\quad\) Trettel & Larsson log indicator function

  18. \(y_V^+du_{V}^+/dy_V^+,\quad\) Volpiani log indicator function

  19. \(y_G^+du_{G}^+/dy_G^+,\quad\) Griffin et al. log indicator function

  20. \(y_H^+du_{H}^+/dy_H^+,\quad\) Hasan et al. log indicator function

  21. \(\overline{\tau}_{11}/\tau_w,\quad\) normal Reynolds stress component 11, scaled by density, in viscous units

  22. \(\overline{\tau}_{22}/\tau_w,\quad\) normal Reynolds stress component 22, scaled by density, in viscous units

  23. \(\overline{\tau}_{33}/\tau_w,\quad\) normal Reynolds stress component 33, scaled by density, in viscous units

  24. \(\overline{\tau}_{12}/\tau_w,\quad\) Reynolds shear stress component 12, scaled by density, in viscous units

  25. \(\overline{\rho}_{rms}/(\rho_w\gamma M_\tau^2),\quad\) Density rms normalized by wall density and friction Mach number

  26. \(\overline{T_{rms}}/(\rho_w\gamma M_\tau^2),\quad\) Temperature rms normalized by wall temperature and friction Mach number

  27. \(\overline{p_{rms}}/\tau_w,\quad\) pressure rms normalized by wall shear stress

Curved Channel flow

Make sure that the file postpro.ini is present in the run folder and all the parameters have been set correctly. Copy the executable postpro.exe to the case folder you want to post-process and run:

$ ./postpro.exe

This will print the post-processed flow statistics in the folder POSTPRO/, which will contain the files channinfo_concave.dat, channinfo_convex.dat, channstat_concave.prof, channstat_convex.prof and channstat_global.prof, referring to the concave side, concave side, or to the two walls.

channinfo_*.dat

The files channinfo_*.dat contain

  • \(Re_\tau=u_\tau h/\nu_w\), friction Reynolds number, where \(h\) is the channel half width and \(\nu_w\) the kinematic viscosity at the wall

  • \(\overline{\rho}_w\) mean wall density

  • \(u_\tau/u_b\), ratio between friction and bulk flow velocity

  • \(C_f=2\overline{\tau}_w/(\rho_b u_b^2)\) skin-friction coefficient based on the mean wall shear stress, bulk flow velocity and bulk fluid density

channstat_concave/convex.prof

The files channstat_concave.prof and channstat_convex.prof contain mean profiles of channel flow in the following format:

  1. \(y/h,\quad\) wall-normal coordinate normalized with the channel half width

  2. \(\overline{\rho}/\rho_b,\quad\) mean density normalized by bulk density

  3. \(\widetilde{u}/u_b,\quad\) Mean Favre velocity normalized by bulk velocity

  4. \(\overline{T}/T_w,\quad\) mean temperature normalized by the wall temperature

  5. \(\overline{p}/(\rho_bu_b^2),\quad\) mean pressure normalized by twice the dynamic pressure

  6. \(\overline{\mu}/\mu_w,\quad\) mean viscosity normalized by the wall viscosity

  7. \(y^+,\quad\) wall-normal coordinate in viscous units

  8. \(y_{TL}^+,\quad\) wall-normal coordinate transformed according to Trettel & Larsson [16] in viscous units (equivalent to y^*quad semi-local scaling)

  9. \(y_{V}^+,\quad\) wall-normal coordinate transformed according to Volpiani et al. [17] in viscous units

  10. \(u^+,\quad\) mean streamwise velocity in viscous units

  11. \(u_{VD}^+,\quad\) mean streamwise velocity transformed according to van Driest [3] in viscous units

  12. \(u_{TL}^+,\quad\) mean streamwise velocity transformed according to Trettel & Larsson [16] in viscous units

  13. \(u_{V}^+,\quad\) mean streamwise velocity transformed according to Volpiani et al. [17] in viscous units

  14. \(u_{H}^+,\quad\) mean streamwise velocity transformed according to Hasan et al. [6] in viscous units

  15. \(\overline{\tau}_{11}/\tau_w,\quad\) normal Reynolds stress component 11, scaled by density, in viscous units

  16. \(\overline{\tau}_{22}/\tau_w,\quad\) normal Reynolds stress component 22, scaled by density, in viscous units

  17. \(\overline{\tau}_{33}/\tau_w,\quad\) normal Reynolds stress component 33, scaled by density, in viscous units

  18. \(\overline{\tau}_{12}/\tau_w,\quad\) Reynolds shear stress component 12, scaled by density, in viscous units

  19. \(\overline{\rho}/\rho_w,\quad\) mean density normalized by bulk density

  20. \(\overline{\rho}_{rms}/(\rho_w\gamma M_\tau^2),\quad\) Density rms normalized by wall density and friction Mach number

  21. \(\overline{T_{rms}}/(\rho_w\gamma M_\tau^2),\quad\) Temperature rms normalized by wall temperature and friction Mach number

  22. \(\overline{p_{rms}}/\tau_w,\quad\) pressure rms normalized by wall shear stress

channstat_global.prof

The file channstat_global.prof contains mean profiles of channel flow in the following format: 1. \(y/h,\quad\) wall-normal coordinate normalized with the channel half width 2. \(\widetilde{u}/u_b,\quad\) Favre-averaged streamwise velocity component 3. \(\overline{u}/u_b,\quad\) Reynolds-averaged averaged streamwise velocity component 4. \(\overline{\tau}_{11}/\tau_w,\quad\) normal Reynolds stress component 11, scaled by density, in viscous units 5. \(\overline{\tau}_{22}/\tau_w,\quad\) normal Reynolds stress component 22, scaled by density, in viscous units 6. \(\overline{\tau}_{33}/\tau_w,\quad\) normal Reynolds stress component 33, scaled by density, in viscous units 7. \(\overline{\tau}_{12}/\tau_w,\quad\) Reynolds shear stress component 12, scaled by density, in viscous units

Boundary layer

Make sure that the file postpro.ini is present in the run folder and all the parameters have been set correctly.

Run the post-processing tool by typing:

$ ./postpro.exe

The post-processing routine will create the folder POSTPRO, containing the files cf.dat and stat_nnnnn.dat, where nnnnn is the global i-index.

cf.dat

The file cf.dat contains the boundary layer characteristics as a function of the streamwise direction:

  1. \(x/\delta_0,\quad\) streamwise coordinate normalized by inflow boundary layer thickness

  2. \(\delta_{99}/{\delta_{99}}_{in},\quad\) boundary layer thickness

  3. \(\delta^*,\quad\) displacement thickness

  4. \(\theta^*,\quad\) momentum thickness

  5. \(\delta_i^*,\quad\) incompressible displacement thickness

  6. \(\theta_i^*,\quad\) incompressible momentum thickness

  7. \(H,\quad\) shape factor

  8. \(H_i,\quad\) incompressible shape factor

  9. \(\rho_w/\rho_{\infty},\quad\) Wall density

  10. \(T_w/T_\infty,\quad\) Wall temperature

  11. \(p_w/p_\infty,\quad\) Wall pressure

  12. \(p_{rms}/\tau_w,\quad\) Wall pressure rms

  13. \(u_\tau/u_\infty,\quad\) friction velocity

  14. \(Cf=\overline{\tau}_w/(\rho_w U_\infty^2),\quad\) friction coefficient

  15. \(Cf_i=\overline{\tau}_w/(\rho_w U_\infty^2),\quad\) incompressible friction coefficient, based on Van Driest II transformation [4]

  16. \(Re_{\delta_{99}}=u_\inf\delta_{99}/\nu_\infty,\quad\) Reynolds number based on the boundary layer thickness

  17. \(Re_{\theta}=u_\inf\theta/\nu_\infty,\quad\) Reynolds number based on the momentum thickness

  18. \(Re_{\delta_2}=\rho_\inf u_\inf\theta/\mu_w,\quad\) Reynolds number based on the momentum thickness and wall viscosity

  19. \(Re_\tau=\delta_{99}/\delta_v,\quad\) friction Reynolds number

  20. \(B_q=q_w/(\rho_wC_pu_\tau T_w),\quad\) heat flux coefficient

  21. \(c_h=q_w/[\rho_wC_pu_\tau (T_w-T_r)],\quad\) Stanton number

stat_nnnnn.dat

The files stat_nnnnn.dat contain the boundary layer profiles in the following format:

  1. \(y/{\delta_{99}}_{in},\quad\) wall-distance normalized by boundary layer thickness at the inflow

  2. \(\overline{\rho}/\overline{\rho}_\infty,\quad\) mean density

  3. \(\widetilde{u}/u_0,\quad\) mean streamwise velocity

  4. \(\widetilde{v}/u_0,\quad\) mean wall-normal velocity

  5. \(\widetilde{T}/T_\infty,\quad\) Mean temperature

  6. \(\overline{p}/p_\infty,\quad\) Mean pressure

  7. \(\overline{\mu}/\mu_w,\quad\) Mean viscosity normalized by the wall viscosity

  8. \(y/\delta_{99},\quad\) wall-distance normalized by local boundary layer thickness

  9. \(y^+,\quad\) wall-distance in viscous units

  10. \(y_{TL},\quad\) wall-distance transformed according to Trettel & Larsson [16], in viscous units

  11. \(y_V,\quad\) wall-distance transformed according to Volpiani el al. [17], in viscous units

  12. \(\widetilde{u}^+,\quad\) streamwise velocity in viscous units

  13. \(u_{VD}^+,\quad\) streamwise velocity transformed according to van Driest [3], in viscous units

  14. \(u_{TL}^+,\quad\) mean streamwise velocity transformed according to Trettel & Larsson [16], in viscous units

  15. \(u_{V}^+,\quad\) mean streamwise velocity transformed according to Volpiani et al. [17], in viscous units

  16. \(u_{G}^+,\quad\) mean streamwise velocity transformed according to Griffin et al. [5], in viscous units

  17. \(u_{H}^+,\quad\) mean streamwise velocity transformed according to Hasan et al. [6], in viscous units

  18. \(y^+du_{VD}^+/dy_{VD}^+,\quad\) van Driest indicator function

  19. \(y_{TL}^+du_{TL}^+/dy_{TL}^+,\quad\) Trettel & Larsson log indicator function

  20. \(y_V^+du_{V}^+/dy_V^+,\quad\) Volpiani log indicator function

  21. \(y_G^+du_{G}^+/dy_G^+,\quad\) Griffin et al. log indicator function

  22. \(y_H^+du_{H}^+/dy_H^+,\quad\) Hasan et al. log indicator function

  23. \(\overline{\tau}_{11}/\tau_w,\quad\) normal Reynolds stress component 11, scaled by density, in viscous units

  24. \(\overline{\tau}_{22}/\tau_w,\quad\) normal Reynolds stress component 22, scaled by density, in viscous units

  25. \(\overline{\tau}_{33}/\tau_w,\quad\) normal Reynolds stress component 33, scaled by density, in viscous units

  26. \(\overline{\tau}_{12}/\tau_w,\quad\) Reynolds shear stress component 12, scaled by density, in viscous units

  27. \(\rho_{rms}/(\rho_w\gamma M_\tau^2),\quad\) density rms

  28. \(T_{rms}/(T_w\gamma M_\tau^2),\quad\) temperature rms

  29. \(p_{rms}/\tau_w,\quad\) pressure rms in wall units

Curved boundary layer

Make sure that the file postpro.ini is present in the run folder and all the parameters have been set correctly.

Run the post-processing tool by typing:

$ ./postpro.exe

The post-processing routine will create the folder POSTPRO, containing the files cf.dat and stat_nnnnn.dat, where nnnnn is the global i-index.

cf.dat

The file cf.dat contains the boundary layer characteristics as a function of the streamwise direction:

  1. \(x/\delta_0,\quad\) x-coordinate of the wall, normalized by inflow boundary layer thickness

  2. \(y/\delta_0,\quad\) y-coordinate of the wall, normalized by inflow boundary layer thickness

  3. \(\delta_{99}/{\delta_{99}}_{in},\quad\) boundary layer thickness based on 0.99 u_infty

  4. \(\delta/{\delta_{99}}_{in},\quad\) boundary layer thickness based on vorticity magnitude

  5. \(\delta^*,\quad\) displacement thickness

  6. \(\theta^*,\quad\) momentum thickness

  7. \(\delta_i^*,\quad\) incompressible displacement thickness

  8. \(\theta_i^*,\quad\) incompressible momentum thickness

  9. \(H,\quad\) shape factor

  10. \(H_i,\quad\) incompressible shape factor

  11. \(\rho_w/\rho_{\infty},\quad\) Wall density

  12. \(T_w/T_\infty,\quad\) Wall temperature

  13. \(p_w/p_\infty,\quad\) Wall pressure

  14. \(p_{rms}/\tau_w,\quad\) Wall pressure rms

  15. \(\delta_v,\quad\) viscous length scale

  16. \(u_\tau,\quad\) friction velocity

  17. \(\tau_w,\quad\) wall shear stress

  18. \(Cf=\overline{\tau}_w/(\rho_w U_\infty^2),\quad\) friction coefficient

  19. \(Cf_i=\overline{\tau}_w/(\rho_w U_\infty^2),\quad\) incompressible friction coefficient, based on Van Driest II transformation [4]

  20. \(u_e/u_\infty,\quad\) Ratio between external velocity (0.99u_infty) and nominal free-stream velocity

  21. \(u_e/u_\infty,\quad\) Ratio between external velocity (u(delta_{99})) and nominal free-stream velocity

  22. \(Re_{\delta_{99}}=u_\inf\delta_{99}/\nu_\infty,\quad\) Reynolds number based on the boundary layer thickness

  23. \(Re_{\theta}=u_\inf\theta/\nu_\infty,\quad\) Reynolds number based on the momentum thickness

  24. \(Re_{\delta_2}=\rho_\inf u_\inf\theta/\mu_w,\quad\) Reynolds number based on the momentum thickness and wall viscosity

  25. \(Re_\tau=\delta_{99}/\delta_v,\quad\) friction Reynolds number

  26. \(B_q=q_w/(\rho_wC_pu_\tau T_w),\quad\) heat flux coefficient

  27. \(c_h=q_w/[\rho_wC_pu_\tau (T_w-T_r)],\quad\) Stanton number

stat_nnnnn.dat

The files stat_nnnnn.dat contain the boundary layer profiles in the following format:

  1. \(y/{\delta_{99}}_{in},\quad\) wall-distance normalized by boundary layer thickness at the inflow

  2. \(\overline{\rho}/\overline{\rho}_\infty,\quad\) mean density

  3. \(\widetilde{u}/u_0,\quad\) mean Cartesian velocity in x-direction

  4. \(\widetilde{v}/u_0,\quad\) mean Cartesian velocity in y-direction

  5. \(\widetilde{u}/u_0,\quad\) mean wall-parallel velocity

  6. \(\widetilde{v}/u_0,\quad\) mean wall-normal velocity

  7. \(\widetilde{T}/T_\infty,\quad\) Mean temperature

  8. \(\overline{p}/p_\infty,\quad\) Mean pressure

  9. \(\overline{\mu}/\mu_w,\quad\) Mean dynamic viscosity normalized by the wall viscosity

  10. \(y/\delta_{99},\quad\) wall-distance normalized by local boundary layer thickness

  11. \(y^+,\quad\) wall-distance in viscous units

  12. \(y_{TL},\quad\) wall-distance transformed according to Trettel & Larsson [16], in viscous units

  13. \(y_V,\quad\) wall-distance transformed according to Volpiani el al. [17], in viscous units

  14. \(\widetilde{u}^+,\quad\) streamwise velocity in viscous units

  15. \(u_{VD}^+,\quad\) streamwise velocity transformed according to van Driest [3], in viscous units

  16. \(u_{TL}^+,\quad\) mean streamwise velocity transformed according to Trettel & Larsson [16], in viscous units

  17. \(u_{V}^+,\quad\) mean streamwise velocity transformed according to Volpiani et al. [17], in viscous units

  18. \(u_{H}^+,\quad\) mean streamwise velocity transformed according to Hasan et al. [6], in viscous units

  19. \(\overline{\tau}_{11}/\tau_w,\quad\) normal Reynolds stress component 11, scaled by density, in viscous units

  20. \(\overline{\tau}_{22}/\tau_w,\quad\) normal Reynolds stress component 22, scaled by density, in viscous units

  21. \(\overline{\tau}_{33}/\tau_w,\quad\) normal Reynolds stress component 33, scaled by density, in viscous units

  22. \(\overline{\tau}_{12}/\tau_w,\quad\) Reynolds shear stress component 12, scaled by density, in viscous units

  23. \(\rho_{rms}/(\rho_w\gamma M_\tau^2),\quad\) density rms

  24. \(T_{rms}/(T_w\gamma M_\tau^2),\quad\) temperature rms

  25. \(p_{rms}/p_0,\quad\) pressure rms in outer units

Airfoil

Make sure that the file postpro.ini is present in the run folder and all the parameters have been set correctly.

Run the post-processing tool by typing:

$ ./postpro.exe

The post-processing routine will create the folder POSTPRO, containing the files avg_forces.dat, bl_pressure.dat bl_suction.dat and stat_nnnnn.dat, where nnnnn is the global i-index.

avg_coeff.dat

The file avg_coeff.dat contains the boundary layer characteristics as a function of the streamwise direction:

  1. \(c_L=L/(0.5\rho_\infty u_\infty^2)\) Lift coefficient per unit chord

  2. \(c_D=D/(0.5\rho_\infty u_\infty^2)\) Drag coefficient per unit chord

  3. \(c_p=(\oint_s p\mathbf{n} \cdot \mathrm{d}\mathbf{s})/(0.5\rho_\infty u_\infty^2)\) Integrated wall pressure normalized by the dynamic pressure

  4. \(c_f=(\oint_s \boldsymbol{\tau}_w\cdot \mathrm{d}\mathbf{s})/(0.5\rho_\infty u_\infty^2)\) Integrated wall-shear stress normalized by the dynamic pressure

bl_suction.dat/bl_pressure.dat

The files bl_pressure/bl_suction.dat contain the airfoil boundary layer characteristics as a function of the streamwise direction:

  1. \(x/\delta_0,\quad\) x-coordinate of the wall, normalized by inflow boundary layer thickness

  2. \(y/\delta_0,\quad\) y-coordinate of the wall, normalized by inflow boundary layer thickness

  3. \(\delta_{99}/{\delta_{99}}_{in},\quad\) boundary layer thickness based on 0.99 u_infty

  4. \(\delta/{\delta_{99}}_{in},\quad\) boundary layer thickness based on vorticity magnitude

  5. \(\delta^*,\quad\) displacement thickness

  6. \(\theta^*,\quad\) momentum thickness

  7. \(\delta_i^*,\quad\) incompressible displacement thickness

  8. \(\theta_i^*,\quad\) incompressible momentum thickness

  9. \(H,\quad\) shape factor

  10. \(H_i,\quad\) incompressible shape factor

  11. \(\rho_w/\rho_{\infty},\quad\) Wall density

  12. \(T_w/T_\infty,\quad\) Wall temperature

  13. \(p_w/p_\infty,\quad\) Wall pressure

  14. \(p_{rms}/\tau_w,\quad\) Wall pressure rms

  15. \(\delta_v,\quad\) viscous length scale

  16. \(u_\tau,\quad\) friction velocity

  17. \(\tau_w,\quad\) wall shear stress

  18. \(Cf=\overline{\tau}_w/(\rho_w U_\infty^2),\quad\) friction coefficient

  19. \(Cf_i=\overline{\tau}_w/(\rho_w U_\infty^2),\quad\) incompressible friction coefficient, based on Van Driest II transformation [4]

  20. \(c_p,\quad\) Pressure coefficient

  21. \(u_e/u_\infty,\quad\) Ratio between external velocity (0.99u_infty) and nominal free-stream velocity

  22. \(u_{99}/u_\infty,\quad\) Ratio between external velocity (u(delta_{99})) and nominal free-stream velocity

  23. \(Re_{\delta_{99}}=u_\inf\delta_{99}/\nu_\infty,\quad\) Reynolds number based on the boundary layer thickness

  24. \(Re_{\theta}=u_\inf\theta/\nu_\infty,\quad\) Reynolds number based on the momentum thickness

  25. \(Re_{\delta_2}=\rho_\inf u_\inf\theta/\mu_w,\quad\) Reynolds number based on the momentum thickness and wall viscosity

  26. \(Re_\tau=\delta_{99}/\delta_v,\quad\) friction Reynolds number

  27. \(B_q=q_w/(\rho_wC_pu_\tau T_w),\quad\) heat flux coefficient

  28. \(c_h=q_w/[\rho_wC_pu_\tau (T_w-T_r)],\quad\) Stanton number

  29. \(j_\omega,\quad\) index of the wall-normal mesh coordinate corresponding to the boundary layer thickness based on the vorticity criterion

  30. \(j_\omega,\quad\) index of the wall-normal mesh coordinate corresponding to the boundary layer thickness based on \(u_{99}\)

stat_nnnnn.dat

The files stat_nnnnn.dat contain the boundary layer profiles in the following format:

  1. \(y/{\delta_{99}}_{in},\quad\) wall-distance normalized by boundary layer thickness at the inflow

  2. \(\overline{\rho}/\overline{\rho}_\infty,\quad\) mean density

  3. \(\widetilde{u}/u_0,\quad\) mean Cartesian velocity in x-direction

  4. \(\widetilde{v}/u_0,\quad\) mean Cartesian velocity in y-direction

  5. \(\widetilde{u_\parallel/u_0,\quad\) mean wall-parallel velocity

  6. \(\widetilde{v}_\perp/u_0,\quad\) mean wall-normal velocity

  7. \(\widetilde{T}/T_\infty,\quad\) Mean temperature

  8. \(\overline{p}/p_\infty,\quad\) Mean pressure

  9. \(\overline{\mu}/\mu_w,\quad\) Mean dynamic viscosity normalized by the wall viscosity

  10. \(y/\delta_{99},\quad\) wall-distance normalized by local boundary layer thickness

  11. \(y^+,\quad\) wall-distance in viscous units

  12. \(y_{TL},\quad\) wall-distance transformed according to Trettel & Larsson [16], in viscous units

  13. \(y_V,\quad\) wall-distance transformed according to Volpiani el al. [17], in viscous units

  14. \(\widetilde{u}^+,\quad\) streamwise velocity in viscous units

  15. \(u_{VD}^+,\quad\) streamwise velocity transformed according to van Driest [3], in viscous units

  16. \(u_{TL}^+,\quad\) mean streamwise velocity transformed according to Trettel & Larsson [16], in viscous units

  17. \(u_{V}^+,\quad\) mean streamwise velocity transformed according to Volpiani et al. [17], in viscous units

  18. \(u_{H}^+,\quad\) mean streamwise velocity transformed according to Hasan et al. [6], in viscous units

  19. \(\overline{\tau}_{11}/\tau_w,\quad\) normal Reynolds stress component 11, scaled by density, in viscous units

  20. \(\overline{\tau}_{22}/\tau_w,\quad\) normal Reynolds stress component 22, scaled by density, in viscous units

  21. \(\overline{\tau}_{33}/\tau_w,\quad\) normal Reynolds stress component 33, scaled by density, in viscous units

  22. \(\overline{\tau}_{12}/\tau_w,\quad\) Reynolds shear stress component 12, scaled by density, in viscous units

  23. \(\rho_{rms}/(\rho_w\gamma M_\tau^2),\quad\) density rms

  24. \(T_{rms}/(T_w\gamma M_\tau^2),\quad\) temperature rms

  25. \(p_{rms}/p_0,\quad\) pressure rms in outer units